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Abstract. The velocity potentials of a point source moving at a constant velocity in the upper layer of a two-layer
fluid are obtained in a form amenable to numerical integration. Each fluid layer is of finite depth, and the density
difference between the two layers is not necessarily small. The far-field asymptotic behavior of the surface waves
and internal waves are also derived using the method of stationary phase. They show that the wave system at the
free surface or at the interface each contains contributions from two different modes: a surface-wave mode and an
internal-wave mode. When the density difference between the two layers is small or the depth of the upper layer
is large, the surface-wave mode mainly affects the surface waves while the internal-wave mode mainly affects
the internal waves. However, for large density difference, both modes contribute to the surface wave or internal
wave system. For each mode, both divergent and transverse waves are present if the total depth Froude number
is less than a certain critical Froude number which is mode-dependent. For depth Froude number greater than the
critical Froude number, only divergent waves exist for that mode. This classification is similar to that of a uniform
fluid of finite depth, where the critical Froude number is simply unity. The surface waves and internal waves are
also calculated using the full expressions of the source potentials. They further confirm and illustrate the features
observed in the asymptotic analysis.

Keywords: gravity waves, internal waves, stratified flow, Green’s function, shallow-water effects, Froude number,
wave patterns, asymptotics

1. Introduction

Density stratification is a common occurrence in the ocean owing to variation of water temper-
ature and salinity with depth. Very often the density gradient occurs within a thin pycnocline
separating two well-mixed fluid layers of almost constant density. This pycnocline structure
can be modeled by a two-layer fluid with a density jump across the interface. In this model,
the fluid in each layer is assumed to be inviscid, incompressible and have a constant density.
Surface or sub-surface marine vehicles sometimes operate in such a stratified environment
and can generate both surface and internal waves. This generation of internal waves gives rise
to some interesting hydrodynamic phenomena, such as the ‘dead-water’ effect (Ekman [1],
Miloh et al. [2, 3]) and possibly the narrow V wakes observed in synthetic aperture radar
(SAR) images (Hughes [4], Tulin and Miloh [5]). Also of intrinsic interest are the wave
patterns created on the free surface and on the interface. They are important with regard to
the visual detectability of sub-surface vehicles. Theoretical investigations of the internal-wave
patterns have been carried out by various authors. The far-field kinematical wave patterns were
obtained by Keller and Munk [6] using ray methods and also by Yih [7], Tulin and Miloh [5]
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Figure 1. Definition of coordinate system.

using equivalent asymptotics. For the highly supercritical case, where the speed of the ship
is much greater than the phase speed of the internal waves, the internal-wave wakes are then
very narrow, and numerical cross-flow theories have been used to compute the internal waves
(Tulin, Wang, and Yao [8], Wong and Calisal [9]). Earlier, Yeung and Kim [10] pointed out
that such cross-flow theory can only capture the presence of divergent waves. Other works
on this subject deal with the Green functions for a two-layer fluid. Hudimac [11] derived the
Green functions for an infinitely deep lower fluid layer. He showed the internal wave crests in
the far field for both the subcritical and supercritical case. Crapper [12] extended the study to
a pressure point and introduced a less cumbersome method for dealing with the asymptotics.
Other works on Green functions in a two-layer fluid include those of Sretenskii [13], Uspenskii
[14], and Sabuncu [15]. These authors focused on the internal-wave resistance of thin ships
of the Michell type [16]. Uspenskii [14] assumed the fluid to be of finite depth, and Sabuncu
[15] considered other cases where the upper fluid is either infinitely thick or bounded by a
rigid surface. More recently, in addressing the ‘dead-water’ problem, Mitat. [3] derived

the Green functions for a two-layer fluid of finite depth and also showed some results for the
internal waves in the case of small density difference between the two fluid layers.

In the above mentioned studies on wave patterns in a two-layer fluid, attentions were
usually focused on the internal waves. If the density difference between the two fluid layers is
small, the critical Froude number£the Froude number corresponding to the fastest internal
waves, is also small, and it would be reasonable to neglect the effects of the free surface.
However, in the supersonic case, where the source Froude number is much greates,than Fr
significant surface waves can be generated so that their effects on the internal wave pattern
may not be negligible. Also, when large density difference exists, it is possible to generate
significant disturbances on both the free surface and the interface, and interactions between
the two wave systems may result in unsual surface and internal wave patterns.

In this paper, we derive the Green functions for a two-layer fluid of finite depth and
use them to investigate the wave patterns on both the free surface and interface, with the
fluid-depth ratio and density ratio being arbitrary. In such an approach, we are thus able to
investigate in a unifying way how the two wave systems are coupled and their dependence on
the said physical parameters.
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2. Problem formulation

Consider a rectangular coordinate system moving with a source at a constant VEl@sty
shown in Figure 1. The, y plane of this system coincides with the undisturbed interface
between the two fluid layers. The positiweaxis points in the direction of motion of the
source, and the positiveaxis points upward. The source is restricted to the upper fluid layer,
and its location is denoted by ,(5, ¢). The densities and depths of the upper and lower fluid
layer are indicated by, 11 andp,, ko, respectively.

As in Lamb [17], a fictitious dissipative force proportional to the perturbation velocity is
introduced where the positive proportionality constant is denoted.byhis force does not
disturb the irrotational nature of the flow, but it does facilitate the satisfaction of the radiation
condition and will be made zero in the final results. If the velocity potentials in the two fluid
layers are denoted by (x, y, z), wherem = 1, 2 refer to the upper and lower fluid layer,
respectively, then the governing equations@t (x, y, z) can be written as

V3GV =8(x —&,y—n,z—¢) and V3G? =0, (1)

whereé is the delta function. The linearized boundary conditions on the free surface and the
interface are (see Sabuncu [15])

GP +GR —uGP =0, z=h, )
y(k,GP + GV — uGP) =k,G? + G2 — uG?, =0 3)
GP=G2, =0 @

wherek, = g/U? andy = p1/p,. Equation (2) is the usual mixed free-surface condition,
whereas (3) and (4) are the dynamic and kinematic conditions on the interface. On the rigid
bottom, the boundary condition is

G;Z) =0, 7z = —ho. (5)
And finally, far upstream of the source, the fluid velocities must vanish.

lim VvG'™ = 0. (6)

X—> 00

3. Derivation of the Green functions

3.1. FOURIER TRANSFORMS

We assume the solutiors™ to have the following forms:

1
GY = =+ GP and G® =G?, )

wherei? = (x — )2+ (y — n)2 + (z — ¢) The unknown function& "™ must now satisfy
the Laplace equation:

V2G™ =0, (8)
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To solve forG™, we first introduce the following Fourier-transform pairs:
G(k1, k2, z) = F{G(x,y,2)}

1 o o0 .
Z / / G(x,v,2) e—l[kl(X—E)"!‘kZ(y—ﬂ)] dx dy, (9)

G(x,y,2) = F HG(k1, k, 2)}

= % /Z /Z G, (ky, ko, 7) €GO Hh20=0] g, ik, (10)
The transform of Equation (8) becomes
o — (kS + k)G = (11)
which has the following solution
Go" k1, ko, 2) = A™ (ky, kp) €7 + B (k1, ko) €7, (12)

wherek? = k? + k3. The Fourier transforms of the boundary conditions in Equations (2-5)
are

kg — K26 —ipnki§® =0, z=hy, 49
Y (kG0 — k26D — iuki§V) = 6,62 — k2@ — iuki§®, 7 =0, (14)
4O _g® _o (15)
9,22) =0, z=—ho. (o

Hereg® = F{GPY} = F{1/r}+4P andg® = F{G?} = 62. Substituting the following
well-known relation (see Gradshteyn and Ryzhik [18])

-

and Equation (12) into the above boundary conditions, we obtain a system of linear equations
for the four unknown coefficientd ™ (k1, k) andB"™ (k4, k»), m = 1, 2. These equations can

be easily solved, and onc€™’s and B’s are known g™ can be inverted in thex( y, z)

space to give

GP(x,y,2) = / / (2a(a + yb) & costik(z — ¢)]
+2eab e costik(z — ¢)] — eb? 79 4 eg? @k hTT0

—b(a+yb) ghd==5 +a(ya+b) @ kld—z~ C)} dkd@ (18)
Gf,Z)(x, y,2) = % / {b(a + b)[e{<(h+z—z) + ek(dfzf{)]
- JO

—a(a + b)[e ¥+i=0 4 gkld—z= <>]} dkd9 (19)
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where h=hqy+ hy, d =hy— hy, e=1-—y,
(a,b) = k £ k,5e@0 + ipused,
w=(x —§&)cosh + (y — n)sing,
A = 2eabcoshkd + b(ya + b) €' +a(a + yb) e,

If we let &, in the expressions faG ™ approach infinity, we will recover the Green functions

for the case of an infinitely deep lower fluid layer as given in [15]. AG#? can be reduced

to the potential of a source moving in a homogeneous fluid of finite-depth, as given in Pond
[19], by letting eitherp, = p,, ¥ = 0, orh, = 0. Whenp, = p,, Equations (18) and (19) each
gives the expression for the single-layer, finite-depth Green function (SLFDGF). However, as
p2—>00 Or Yy = p1/p> = 0, G® becomes identically zero, ar@? reduces to the SLFDGF.

The lower fluid in this case behaves like a solid bottom since its density becomes infinitely
large. Lastly, by lettingz, approach zero in Equation (18), we obtain again the SLFDGF.

3.2. CONTOUR INTEGRATION IN THEk-PLANE

The expressions fat ™ in Equations (18) and (19) are real expressions if proper cancellation
of the imaginary parts of the integrals are observed. TGJ®, can be written as

G = — lim m{/ f H™ (k, 0) ( )dkde , (20)

7T u—0

wherefR represents the real part of the complex expression inside the braced ", 6)
are given in Appendix A.
To perform the integration in Equation (20), we first need to locate the poles of the in-
tegrand. Letx = k + iu seco, t, = tanhkh,, n = 1,2, then we can rewrite\(k, 9)
as

= 4(coshkhq coshkhy, + y sinhkhy sinhkhy) x

[k — 1k, se@0Q1 (k)1 — 3k, se€ 02 (k)], (21)
where
4+t t1t2(1 4 ytatp)
Quk)= ———[14+ (D"t 141 —p) === 22
n (k) Ty [ + (=1 \/ 1=y PEAY: } (22)

forn = 1, 2. Thus, for a givem, the roots of Equation (21) are given implicitly by
k, = 3k,se€0Q,(k,) —ipsecd, n=12. (23)

Bothk, are in the lower half of the complex plane, and@aapproaches zero, these poles will
approach the positive real axis from below.
With the location of the poles known, we can evaluate the inner integral of Equation (20)
using contour integration. Figure 2 shows the appropriate contours=férandw <0, with
'3 andT’s at 453 to the real axis. Whew > 0, the poles, are outside the chosen contour,
and an application of the residue theorem yields the following equatidh-asoo:
e uw eiuw du

= glode [
(m) — ) B (m) i
/0 H (k’e)A(k, %) _/0 1+iH [u(l+l)’0]A[u(1+i),0]' (24)
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Figure 3. Polar coordinates for a field point.

Whenw < 0, the polesk, are inside the contour, and the residue theorem yields the
additional terms from the residues at these poles.

[ a0 [ a-oamua-y .
0 Ak ) : T @ =), 0]

eik,,w

2
—27i Z H(m)(kn, 9)m,

n=1

(25)

whereA’(k,, 6) = dA /dk|y—i,. Note that the integral on the right-hand side of Equation (25)
is the complex conjugate of the corresponding integral in Equation (24).

Let us introduce the polar coordinat@sy/) as shown in Figure 3. Then = —r cog6 +
¥). Here @ can be interpreted physically as the orientation of an elemental wave relative to the
x-axis, andy is the polar angle of (x, y) relative to the negati@xis. If we further restrict
y = 0, then it is easy to see thatis negative wher-7 < 6 < (3 — v) and positive when

'% - V) < 6 < Z. Using these results and Equations (24) and (25), we can write (20), in the
limitasu — 0, as

1 (% (2R + 80"
G(O’"):—an f L 0%  duds
—z Jo
2

R? + 42

z [ ky

2 7_1// e
R H™ (k,,0)——— do } , 26
+;s{/ ) 5 (26)

s
2
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Figure 4. Solution of the wavenumbé, .

whereR (u, 0), 8(u, 0), W™ (u, 6), W (u, 0), H™ (k, 6), andA’ (k, #) are given in Appen-

dix A. The double integral in this equation contains no singularity and is relatively straight-
forward to evaluate. The single integrals require the valudés ahd merit additional consid-
erations. Asu — 0, the poles, can be obtained from (23) as

k, = 3k,se¢0Q,(k,), n=12 (27)

The solution of this equation is illustrated in Figure 4, where the expression on the right-
hand side is plotted against the variablél he intersection of this curve with the straight line

f (k) = k determines the location of the potg. The slope of this curve @ = 0 is given

by k,h se@d Fr2, where Ff = 5-%%| _ The nondimensional parameter, s the critical
Froude number corresponding to the wave mad@erforming the differentiation, we can

relate Fy, to the other physical parameters of the problem as follows:

1 A—-yhihe

2 w2 (28)

Frﬁ — % + (_1)n+1\/
It is easy to see from Figure 4 that the existencé,olepends on the value of the slopg
secd Fr?, wherek, exists if this slope is greater than unity. If we define the total depth Froude
number as Pr= U?/gh, thenk,h seéd Fr2 = (secd™2)2, andk, exists if (secd 22)2 > 1.
Thus, we can rephrase the criteria for the existendg @i terms of the relative values of Fr
and Fy, as follows. If Fr<Fr,, thenk, exists for all values of within the range of integration
since set® > 1. If Fr> Fr,, thenk, exists only if se®d > i—ﬁ or for values of9 such that

o] = 6, = c0§1(%). Thus, when E¢ Fr,, the range of integration of the corresponding
single integral in (26) should be modified to exclude the value$ fofr which &, does not

exist,i.e, |0] < 0,.

3.3. FHYSICAL INTERPRETATION OFFT,

The physical meaning of the critical Froude number €an be seen by considering waves
propagating along the track of the source. We can obtain the wave number for thesé jvaves
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Figure 5. Critical Froude numbers, fFrand Fp.

by substitutingd = 0 into (27). Since the phase speed of these waves is equal to the source
speedU, the following relationship between phase speed and wave number can be obtained:

g Su(ky)
As y approaches unity, this relationship reduces to
= k%tanhklh and ¢ =0. (30)

Thus,c; is just the phase speed for surface waves in uniform water of finite deptlso, as
h, approaches infinity, Equation (29) becomes

1 — y) tanhkoh
2=% and 2=$ . Q-y)tanhkh (31)
k1 ko 1+ Y tanhkzhl

Here, the expression fer is the same as the phase-speed relationship for surface waves in
uniform water of infinite depth, and the expression deis the phase-speed relationship for
internal waves for the special case of an infinitely deep lower fluid [15]. In light of these
results, we shall now denote waves associated with wave nukalsesr being generated by
the surface-wave mode and those associated with wave numberbeing generated by the
internal-wave mode.

From (29), we can show that the fastest waves are those with the longest wavelengths, and
by allowingk’: go to zero, we obtain the maximum phase speed for waves of each wave mode.
For smallk, Q, (k) ~ % io s and the maximum phase speed is

2 g 0%,
c = —.
n,M 2 ok 4—0

— ghFP. (32)

Thus, in summary, the critical Froude numbey, i&rthe Froude number associated with the
fastest wave of wave mode This Froude number plays an important role in determining the
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Figure 6. Functiong, (9) for 6 > 0, case of F& Fr, (left) and Fr>Fr, (right).

shape of the wave pattern. If we exprésgh as 1— h1/h, then from (28), Fris a function
of the density ratioy and the depth ratif,/ z. Figure 5 plots both krand Fg for y andh,/h
from O to 1. As can be seen in this figurey i larger than Ft. Thus, the maximum phase
speed of waves of the surface-wave mode is larger than that of the internal-wave mode.

4. Surface-wave and internal-wave patterns

From the dynamic boundary conditions on the free surface and interface, the surface wave and
internal wave patterns due to the motion of a point source can now be expressed as follows:

(O, y = Low (33)
8

U
@, y) = Q(GEP —yGd)

z=hy z=0

To gain more insights into the generated wave patterns, we apply the method of stationary
phase to the above equations. Since we are interested in the far field behind the source, we
will focus only on the single-integral terms 6f™. Thus, by Equation (26), in the far field

¢™ can be expressed as

2
;M ~ YR {f
n=1

(NE]

v "
P (k, . 0) B @) d@} . r/h>>1, (34)

T
2

where £,(6,¥) = —hk, cos6 + ¢), PY = [Uk,cosd HY/(gA)]|,—p, and PP =
[Uk,cosd (H?® — yH®D)/(egA")]|.—o. Note that each wave patterr¥”” contains contri-
butions from both the surface-wave mode associated with thekpaad the internal-wave
mode associated wittp.

4.1. STATIONARY POINTS

The stationary points of, (0, ¥) in (34) for larger/h are the solutions of the following
equation [20]:

dky
% _ ,, tand

tany = ,(0) = 4p———.
Se-tand + k,

(39)

Sincek, (9) is defined for—% < 6 < % when F< Fr,, but when Fe& Fr,, k, exists only
for 6, < 10| < %, we need to considey, (9) for these two cases separately. For positive
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we need only consider positive rangetofFigure 6 illustrates the general behaviorggfo)
for the subcritical case and supercritical case. It is evident from this figure that stationary
points exist only wheny < v, the maximum half angle in the wake where dominant waves
exist. ¥, is given by tarrl[gn(ej;)]. For Fr> Fr,, ¥, can be shown to be given explicitly by
sin~*(Fr, /Fr). For any point£, v) in the wake, either two stationary poirtg;, 6, » exist for
the case of R Fr,, or one stationary poirt, ; exists for Fr>Fr,. Waves oriented 4t in the
range of f,, 5] represent the divergent wave field, while those irg[Q, if exist, represent the
transverse wave system. Note that in this context, there is considerable analogy to the classical
Kelvin wave system. It is helpful to denote the number of stationary poinfs(6f ) ass,,
thens, = 2 for Fr< Fr, ands, = 1 for Fr> Fr,.

Figures 7 and 8 illustrate the dependence of the half-apglen 71/ 4, y, and Fr. As the
ratio Fr/Fy, goes from zero to unityy, increases from @8, the well-known Kelvin-wave
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wake in deep water, to 90When Fr/F; > 1, v, decays as sift (Fr,/Fr). The curvey,
versus Fr/Fy has a very weak dependence/on i andy . Thus, for a constant Fh,/k and

y affect ¢, mainly through the critical Froude number,FThe half-angley,, on the other
hand, shows a stronger dependence on hetth andy . Figure 7 plotsy,, against Fr/Fr for
different values ofi1/ h but with constany = 0-97, the standard fresh water/salt water ratio.
The curveyr, is represented here by the dot symbol and is shown only:ftk = 0-5 sinceyr,

is fundamentally the same for other valuesiof 2. The angley, is represented by the solid
line and is shown foh,/h = 0-1, 03, 05, 0-7 and 09. Since the functiog, (6) depends only
on the product ot/ h andh,/ k, the half-angley, is the same fok,/h = 0-1, hp/h = 0-9
and forh,/h = 0-9, hy/ h = 0-1. Similarly, the curves foki,/h = 0-3and i /h = 0-7 are the
same. Foh,/h = 0.5, the curves foi; andy, are practically the same, but Ag/ h» moves
away from 0.5, increases noticeably for-® < Fr/Fr, < 1. Figure 8 shows the effects
of y ony, for constanti;/h = 0-1 or 09. Asy increasesy), also increases for a certain
range of F3.

4.2. CRESTLINE PATTERNS

For larger/ h, Equation (34) has the following expansion
2 sy , T
(m) ~ (m) _ 1t
) ~ YD A cos| () FulOn v + (DT, (36)

n=1 [=1

where

2

—_— 37
GO O, ) 57

A%mw=PWm@mﬁm/

and f/ = 82 f,/362. According to (36), the surface wave elevatig® and the internal wave
elevationz ® can each be composed of up to four different wave systems: the divergent waves
(I = 1) and the transverse wavds=t 2) due to the surface wave mode € 1), and the
divergent and transverse waves due to the internal wave mode2.

The pattern of the crestlines of the divergent and transverse waves can be obtained by a
procedure as described in Wehausen and Laitone [21]. These crestlines are determined from
the equation of constant phase:

2jm for A™ > 0,

r T
-7 n(en ’ + _1 l_ = 38
hf A V) + (=1 4 (2j+1)7T for A <0, ( )

wherej =0, 1, 2,.... The sign ofAff,) depends only om: andn, but not ori. For the surface

wave moden = 1, bothA{), AYY) < 0, and the crestline pattern due to this mode is the
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Figure 9. Crestlines of surface wave mode 37,
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Figure 10. Crestlines of surface wave mode=@-5,
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Figure 11. Crestlines of internal wave mode,¥t-3,
h1/h =05,y =0.5.

same on the free surface as on the interface. For the internal wave med@, A(le) <
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Figure 12. Crestlines of internal wave mode,
Fr=0-37,h1h = 0.5,y = 0.5.
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Figure 13. Crestlines of internal wave mode,
Fr=0.5,h1/h =05,y =0-5.
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Figure 14. Crestlines of internal wave mode,
Fr=1.3,h1/h =05,y =0.5.

0,

but A(zzl) > 0, and the crestline pattern on the free surface is 8@ of phase with that on
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Figure 15. Amplitude functions for surface-wave mode, FWED-7, h1/h=0-5, y=0-97; A(lll) (surface waves,
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Figure 16. Amplitude functions for internal-wave mode, Fr§&0-7, hq/h=0-5, y=0-97,; A(le) (surface waves,

left), A(zzl) (internal waves, right).

the interfacej.e., the crestlines on the free surface are directly above the troughlines on the
interface.

Figures 9-11 show the crestlines on the free surface and the interface due to the surface-
wave mode for F=0-37, 05, and 13, respectively. In these figures, the depths of the fluid
layers aren;/h = hpo/h = 0.5, and the density ratio i3 = 0-5. For the above physical
parameters, the critical Froude numbers &mnd Fp are 0924 and (383, respectively. Thus,
the patterns in Figures 9 and 10 represent the subcritical case and contain both divergent
and transverse crestlines, whereas the pattern in Figure 11 corresponds to the supercritical
case and contains only divergent crestlines. Figures 12—-14 show the crestline patterns due
to the internal-wave mode for the same Froude numbers and physical parameters. Here, the
crestlines on the free surface, indicated by the solid lines, are different from those on the
interface, indicated by the dashed lines. Again, the pattern for the subcritical speed, Figure 12,
contains both divergent and transverse crestlines, and the patterns for supercritical speeds,
Figures 13 and 14, contain only divergent crestlines.

4.3. WAVE AMPLITUDE ALONG CRESTLINES

Next, we investigate the behavior of the amplitude functjfbfﬁl). Nondimensionally, this
function will depend on the parameteygh, h1/h (or hy/h), v, and Fr. To understand the
dependence of"} on these parameters, we will plaf”) along the crestlines of the divergent
and transverse waves £ 1, 2) for mode index: = 1, 2. To simplify the plotting, we will
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introduce below the nondimensional amplitude functjﬁﬁ) which only depends o and
not onr/h. Note that along each crestline the phase is constant, and this allows us to define

r/h along thejth crestline in terms ofy. Thus, ifA") > 0, thenZ [%*((Q;W and if
1 .
A" <0, thent W Substituting these expressions fgt: in (37) and after
some rearrangings, we obtain the following equation[ﬂﬁ?:
A(m) _ th A( )l \/8.] +c +( l)l+l
nl
u V8

S — Jn(On1, )
= [P Tku(On), Oug]l, | =, (39)

[ S Oty Y1)

wherec = 0 for A”) > 0, ande = 4 for A”) < 0, P™[k, (6,), 60011 = gh?P™
[k, (6,.1), 6,11/ U, which is nondimensional. Note thA '") as defined is nonnegative and only
a function ofy.

Effects of ¢ /h: Figures 15-16 show the effects of the source vertical location on the
nondimensionalized amplitude functidlj’f}). Inthese figuresy = 0.97,h1/h = 0.5, Fr/Fr, =

0.7, and the angle/ is normalized by the half-angle of the wave pattérn Figure 15 plots

A and A{) along the divergent and transverse wave crestlines. These amplitude functions
correspond to the surface and internal waves, respectively, due to the surface-wave mode.
As ¢/ h increasesi.e., as the source moves closer to the free surface, the amplitudes of both
transverse and divergent waves increase, and the divergent waves become more dominant. The
waves on the free surface are larger than those on the interface for this mode, and the amplitude
of the internal waves actually increases as the source moves away from the interface. Figure 16
plots AS) andAY) which are associated with the surface and internal waves, respectively, due
to the internal-wave mode. Here, the wave amplitudes increase, with the divergent waves
become more dominant, as the source moves closer to the interface. The internal waves are
much larger than the surface waves in this case, and it is possible to have large movement of
the interface without visible disturbance on the free surface. Also, the amplitude of the surface
waves due to the internal-wave mode actually increases as the source moves away from the
free surface and closer to the interface.

Effects of speed(Fr): Figures 17-18 show the effects of the Froude number E«Eﬁﬁh In

these figuresy = 0.97,h1/h = 0.5, and¢/h = 0-25,i.e., the source is equidistant from

the free surface and the interface. The Froude number is normalized by the critical Froude
number Ff and ranges from a subcritical value Fr/Et 0-5 to a slightly supercritical value
Fr/Fr, = 1.3. Figure 17 shows the amplitude functloﬂgl associated with the surface-

wave mode, and Figure 18 shows the functlﬂlfﬁ) associated with the internal-wave mode.

For A"} andAY), the amplitude of the transverse waves decreases and the amplitude of the
divergent waves increases as Fy/&pproaches unity from below. This phenomenon is similar

to that of a source in a uniform fluid of finite depth when the Froude number of the source
approaches unity. The behavior of the coupling temﬁ and A(le), i.e,, the amplitude of

the internal waves due to the surface-wave mode and the amplitude of the surface waves due
to the internal-wave mode, respectively, is more unpredictable. Although the amplitudes of

the divergent wavesl{’; and A3 increase as Fr/rapproaches 1 as before, no definitive
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Figure 17. Amplitude functions for surface-wave mode;/2=0-5, ¢/ h=0-25, y=0-97; A(lll) (surface waves,
left), A(lzl) (internal waves, right).
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Figure 18. Amplitude functions for internal-wave modgy/h=0-5, ¢/ h=0-25, y=0.97; Agll) (surface waves,
left), Aézl) (internal waves, right).

trend can be observed for the amplitude of the transverse \A@Q\%SThe amplitude of the

transverse Waves_g)2 actually increases as Frgapproaches 1. When Fr/Fincreases past

unity, only divergent waveéflf"l) exist, and their amplitude decreases slowly with increasing

Fr/Fr,.

Effects of y: Figures 19-20 show the effects pfon Af,f'}). In these figuresh,/h = 0.5,

¢/h =025, and Fr/Fy = 0-7. As shown in Figure 19, the amplitude of the transverse waves
A(ll)z increases ag decreases. This is due to the fact that the lower fluid behaves more like a
solid for smally and, consequently, the effective total depth reduces to a value cloker to

and the amplitude of the surface waves due to the surface-wave mode will increase. For the
divergent Wavesif)l, the effects of decreasing are more complicated. Since Fr{fks kept

fixed, asy decreases, Fralso decreases, and so does Fr. This reduction in Fr causes a more
pronounced decrease in the amplitude of the divergent waves than the transverse waves and
results in an increase (ﬁ(ll)l near the edge of the wake but a decrease in the interior of the
wake. Figure 20 plotsifl) and shows a large increase in the amplitude of the internal waves
asy becomes closer to unity.

Effects of h1/h: The effects ofi1/h on Af,’)'}) are investigated for Fr/kr= 0.7 andy = 0.7.
The amplitude functionsiﬁlf'}) are computed for a source located at a distanceGifidbelow



100 R.W. Yeung and T. C. Nguyen

divergent wave

transverse wave

B
(=]

gh’A V8j+4z1

0.75 1.00

V8

-gh’A V8j+4+1
U

divergent wave

_.-- ransverse wave

0
0.00

0.75

Figure 19. Amplitude functions for surface-wave mode, F¥EO-7,h1/h=0.5, ¢/ h=0-25; A(fl) (surface waves,
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Figure 20. Amplitude functions for internal-wave mode, Frj=0-7,h1/h=0-5, ¢/ h=0.25; Aéﬂ) (surface waves,

left), A(zzl) (internal waves, right).

the free surface. The plots éfl’f;) are not presented here because of space limitation. For these

parameters, the depth ratlq/2 has a relatively minor effect ori(f,). As hi/h increases,
the interface is farther away from the source, a&ﬁ decreases accordingly as expected.
Similarly, A(Z’f}) also decreases as/ h increases.

From the results presented so far, one observes that~¥dr, the coupling termsifl) and

A3 are small compared t{) andAY,. However, fory not close to unity, the coupling terms

can be of comparable magnitude/ﬁ%l) andA% under certain conditions, in particular, when
Fr/Fr, ~ 1 and the source is either close to the free surface or the interface. To illustrate this
point, Figure 21 plotsA, m = 1,2 andn = 1,2 for Fr= 0-37, hy/h = 05,¢/h = 01,

andy = 0-5. The critical Froude number ffor this case is 883 and Fr/Fr = 0-966. In this
figure, the surface waves due to the surface-wave m(fdés of the same order of magnitude

as the surface waves due to the internal-wave m&@}e Thus, one can expect interesting
surface wave patterns under these conditions.

4.4. \\AVE PATTERNS USING FULL EXPRESSIONS OE ™

The crestline patterns shown in Figures 9-14, as pointed out in Chung and Lim [22], merely
express the superposition of the crestlines of the divergent and transverse waves and do not
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Figure 21. Amplitude functionsd”) for Fr = 0-37,h1/h = 0.5,¢/h = 0.1,y = 05.

depend on the amplitudes of these two wave systems. For a better visualization of the surface
and internal waves, we proceed to compgite’ (Equation 33) using the full expressions of

G as presented in Equations (7) and (26). An adaptive quadrature using Simpson’s rule [23]
is used to integrate both the double and single integrals. The hoileshe single integrals are
obtained by Newton’s method. The results of these computations are shown in Figures 22—-27
(see also [24] for some preliminary results). In each of these figures, the surface or interface
elevations for a square areail¥ 17h are plotted. The source is located horizontally at 34
behind the front edge of the square and vertically in the middle of the upper fluid layer. The
depth of each fluid layer is 15 and density ratigs is 0-97 for Figures 22—24 and ®for

Figures 25-27. These plots are intended to illustrate the effects of the source speed on the
generated surface and internal waves, and also to demonstrate the coupling effectsisvhen

not close to unity. Since Er< Fry, it is convenient to classify the wave patterns according

to Fr< Fry, Fr, < Fr < Fry, or Fr < Fr. Thus, for each value of, the wave patterns for
Froude numbers in each of the three regimes are shown. In Figures 32-=24)-97, and

Fr, = 0996 and Fs¥ = 0-087. The three Froude numbers selected for this case ar®-BB,

0.5, and 13. Note that in all these figures, the wave elevatipfid are magnified for clarity,

and the magnification factor is indicated in the caption for each figure.

Figure 22 shows the surface waves and internal waves for@-08. At this low Froude
number, the waves due to the surface-wave mode are negligible, but large waves are generated
on the interface through the internal-wave mode. Since Fr is less thdnufrery close to it,
both divergent and transverse waves are present, and the half-angle of the wave pattern is very
close to 90. The amplitude of the internal waves is approximately 75 times larger than that of
the surface waves. The conditions in these two plots correspond to the well-known dead-water
phenomenon where a ship is traveling close to the speed of the fastest internal waves and is
experiencing a large wave drag due to the generation of large amplitude internal waves. Note
also that fory ~ 1, it is possible to have large vertical displacement of the interface without
significant displacement of the free surface.

Figure 23 plots the surface and internal wave patterns for@-5=At this Froude number,
the source is traveling faster than the fastest internal waves and is in the supercritical speed
with respect to the internal-wave mode. However, it is still moving at the subcritical speed
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Figure 22. Surface waves (left),-8E5 - ¢ and internal waves (right),BE3 - ¢ for Fr=0.08,h1/h = 0.5,
¢/h =025,y = 0.97.

Figure 23. Surface waves (left),-8£4 - ¢D and internal waves (right),-8E4 - ¢@ for Fr= 0.5, h1/h = 05,
¢/h =025,y = 0.97.

Figure 24. Surface waves (left),-6E4 - ¢(D and internal waves (right),-1E5 - ¢ @ for Fr= 1.3, h1/h = 0.5,
¢/h =025,y = 0.97.

with respect to the surface-wave mode. The surface wave pattern is similar to the Kelvin
wave pattern, and the influence of the internal-wave mode on the free surface is negligible,
e, Ay) <« A7). The internal wave pattern contains the narrdwvake associated with the
divergent wave system of the internal-wave mode and also the divergent and transverse waves
systems associated with the surface-wave mode.

Figure 24 shows the surface and internal wave pattern terl=8. The source, in this case,
is travelling faster than the fastest surface and internal waves and is at the supercritical speed
with respect to either mode. At this Froude number, the half-afigie much smaller than the
half-angle,, and it is possible to discern the contribution of each mode to the surface and
internal waves. Again, the surface wave pattern shows little contribution from the internal-
wave mode. The narrow -wake of the internal-wave mode is not seen on the free surface.
Near the source’s track, the free surface is practically flat. On the interface, the rfafrow
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Figure 25. Surface waves (left),-4E4 - ¢ and internal waves (right),3E4 - ¢ for Fr=0-37,h1/h = 05,
¢/h =025,y = 05.

Figure 26. Surface waves (left),-0E4 - ¢D and internal waves (right),-8E4 - ¢ @ for Fr= 0.5, h1/h = 05,
¢/h =025y =05
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Figure 27. Surface waves (left),-6E4 - ¢D and internal waves (right),-8E5 - ¢ @ for Fr= 1.3, h1/h = 05,
¢/h =025y =05

wake is prominent along with the divergent waves of the surface-wave mode, radiating out at
a wider angle from the source’s track.

Figures 25-27 show the wave patternsjfoe= 0-5. The critical Froude numbers for this
case are hr = 0-924 and Fy = 0-383, and the Froude numbers chosen to illustrate the
three Froude number regimes ar80-05, and 13. Figure 25 shows the surface and internal
waves for F&= 0-37. The parameters in these figures are similar to those of Figure 21 with
the exception of /h. In Figure 21, the source is closer to the interface than in Figure 25.
However, the conclusions drawn from Figure 21 are still valid for Figure 25, narﬁ%&,

AS), andAY) are roughly of the same order of magnitude. The surface wave pattern contains
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a significant contribution from the internal wave mode whose divergent waves radiate out at a
angle almost 90to the source’s track. It also has the usual contribution from the surface-wave
mode within a smaller half-anglg,. Figure 25 again confirms what has already been observed

in Figure 21, namely, the internal waves due to the surface-wave mode is much smaller than
the internal waves due to the internal-wave mode. In Figure 25, one can observe the phase
shift in the surface and internal waves due to the internal-wave mode, where the crests of the
divergent waves on the free surface is above the troughs of the waves on the interface. One
can also observe the longer wavelengths of the internal-wave mode compared to the surface
wave-mode.

Figure 26 presents the results for=F10-5. Again, one can see the coupling effects on
both the surface and internal waves. The surface waves and the internal waves contain the
divergent and transverse waves due to the surface-wave mode and the divergent waves due to
the internal-wave mode. Finally, Figure 27 shows the wave patterns$odf3. The surface
wave pattern is similar to that in Figure 24 for = 0-97 where the contribution from the
internal-wave mode is negligible. However, the contribution from the surface-wave mode to
the internal waves is significant as can be seen in Figure 27.

5. Conclusions

The velocity potentials of a steadily translating source in the upper layer of a two-layer fluid
of finite depth is derived in a form amenable to numerical treatment. These velocity potentials
consist of a double-integral term which is symmetric with respect to both #ued y-axes,

and two single-integral terms associated with the surface-wave mode and internal-wave mode.
The velocity potential are then used to analyze the surface and internal wave patterns in the
far field of the source using the method of stationary phase. The results are further confirmed
and illustrated by numerically evaluating the full expressions of the potentials.

Two critical Froude numbers, Frand Fg, are defined in the derivation which play an
important role in determining the shapes of the wave patterns. These critical Froude numbers
are the Froude numbers correspond to the fastest waves of each mode, normalized by the
total depth. From the asymptotic analysis, it is shown that fonthevave mode, if the total
depth Froude number of the source Fr is less thanifer, the source is moving slower than
the fastest waves of themode, then both divergent and transverse waves are generated for
that mode. However, when Fr Fr,, then only divergent waves are excited for this mode.
Further, each wave mode contributes to the surface waves and internal waves. Thus, there are
a maximum of four different wave systems: two on the free surface because of the surface
and internal wave modes and two on the interface because of these same wave modes. When
the density ratio of the two fluid layers, = p1/p-, is close to unity, then Fr~ 1 and
Fr, « 1. The internal-wave mode in this case is important only if the speed of the source is
small and Fr~ Fr,. The surface-wave maode, on the other hand, is important whes Fr,.

Also in this case, the surface waves associated with the internal-wave mode and the internal
waves associated with the surface-wave mode, the ‘cross-coupling influence’, are normally not
very significant. This could allow one to treat the surface waves separately from the internal
waves as were done by many authors. However whénnot close to one, frand Fp can

be of comparable magnitudes, and in certain range of Froude numbers, both modes become
important. Furthermore, the surface and internal waves associated with the ‘cross-coupling
influence’ are significant, and one have to account for all four wave systems.
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Appendix A

The functionsR (u, 0), 8(u, 0), W\ (u, 0), W u, ), H™ (k,0), and A'(k, §) in Equa-
tion (26) are given in this Appendix as follows.

R(u,0) = ek?(coshuh cosuh — coshud cosud)
—2uk, cos 6(sinhuh cosuh — coshuh sinuh)
—2u?cod 0[(1 + y) sinhuh sinuh + € sinhud sinud], (40)

8(u,0) = ek?(sinhuh sinuh — sinhud sinud)
—2uk, cog 6(coshuh sinuh + sinhuh cosuh)
+2u? cod [ (1 + y) coshuh cosuh + € coshud cosud], (41)

vV = 2u2cod Ole(My + My 4+ M7 — Mg — Ny — No — N7 + Ng)
+(A+ y)(M3— Ms+ Ms + Mg — N3+ N4y — N5 — Np)]
—4uk, COS 0y (N3 + Na) + Ns + N + (N7 + Ng)]
+ek?(My + My + M3 — My — Ms — Mg — M7 + Mg

+N1+ N2 + N3 — N4y — Ns — Ng — N7+ Ng), (42)

v = —2u”cos Ole(My + Mz + M7 — Mg+ N1+ N2 + N7 — Neg)
+(1+y)(M3— M4+ Ms + Mg + N3 — Na+ N5+ Ne)l
—4uk, coS 0y (M3 + Ma) + Ms + Mg + (M7 + Mg) — 4]
+ek?(My + My 4+ M3 — My — Ms — Mg — M7+ Mg

—Ni— No— N3+ Ng+ Ns + Ng + N7 — Ng) — 16€uk’hs, (43)

W = 4yu?cod 0(Ms — My + Mg — Mg — N3+ Ny — Ng + No)
—4yuk, co$ 6(N3 + N4+ Ne + No), (44)

W = 4yu?cod 0(—Ms+ My — Mg+ Mg — N3+ N4 — N + No)
—4yuk, COS 0(M3z + My + Mg + Mg — 4), (45)
where

M; = e "UitleD codu(d; — |w|)], N; = e @itledsinfu(d; — |w|)],
dip=dFz+, dsa==+(d—-2z2-170),
dsg=hFz=x¢, d7g==*(h—2z-1¢),

dg =—h— Z+ é',
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HY(k,0) = —8kk,sec8{ecostik(h —z — ¢)] + y coshk(d — z — O]}

+4e(k? + k2 sedf) sinhk(h — z — ¢)]

+4[(1+ y)k? — ek?seéd] sinhk(d — z — ¢)]

—4{[(L+ y)k? + 2kk, seC0 + ek?sedh]e

+e(k* — k? seé) e} coshk(z — ¢)], (46)

H®@(k,0) = 16ycostk(hs+2)] -

{k? sinhk(hy — ¢)] — kk, sec6 cosik(h, — )1}, (47)

A (k,0) = 4k[(1+ y) — hk, sec¢d] coshkh

+2[(1+ y)hk? — 2k, se¢ 6 + ehk? seéd] sinhkh
+4ek coshkd + 2ed (k? — k? seéd) sinhkd. (48)
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