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Abstract. The velocity potentials of a point source moving at a constant velocity in the upper layer of a two-layer
fluid are obtained in a form amenable to numerical integration. Each fluid layer is of finite depth, and the density
difference between the two layers is not necessarily small. The far-field asymptotic behavior of the surface waves
and internal waves are also derived using the method of stationary phase. They show that the wave system at the
free surface or at the interface each contains contributions from two different modes: a surface-wave mode and an
internal-wave mode. When the density difference between the two layers is small or the depth of the upper layer
is large, the surface-wave mode mainly affects the surface waves while the internal-wave mode mainly affects
the internal waves. However, for large density difference, both modes contribute to the surface wave or internal
wave system. For each mode, both divergent and transverse waves are present if the total depth Froude number
is less than a certain critical Froude number which is mode-dependent. For depth Froude number greater than the
critical Froude number, only divergent waves exist for that mode. This classification is similar to that of a uniform
fluid of finite depth, where the critical Froude number is simply unity. The surface waves and internal waves are
also calculated using the full expressions of the source potentials. They further confirm and illustrate the features
observed in the asymptotic analysis.

Keywords: gravity waves, internal waves, stratified flow, Green’s function, shallow-water effects, Froude number,
wave patterns, asymptotics

1. Introduction

Density stratification is a common occurrence in the ocean owing to variation of water temper-
ature and salinity with depth. Very often the density gradient occurs within a thin pycnocline
separating two well-mixed fluid layers of almost constant density. This pycnocline structure
can be modeled by a two-layer fluid with a density jump across the interface. In this model,
the fluid in each layer is assumed to be inviscid, incompressible and have a constant density.

Surface or sub-surface marine vehicles sometimes operate in such a stratified environment
and can generate both surface and internal waves. This generation of internal waves gives rise
to some interesting hydrodynamic phenomena, such as the ‘dead-water’ effect (Ekman [1],
Miloh et al. [2, 3]) and possibly the narrow V wakes observed in synthetic aperture radar
(SAR) images (Hughes [4], Tulin and Miloh [5]). Also of intrinsic interest are the wave
patterns created on the free surface and on the interface. They are important with regard to
the visual detectability of sub-surface vehicles. Theoretical investigations of the internal-wave
patterns have been carried out by various authors. The far-field kinematical wave patterns were
obtained by Keller and Munk [6] using ray methods and also by Yih [7], Tulin and Miloh [5]
∗ Correspondence author, e-mail: rwyeung@socrates.berkeley.edu.
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Figure 1. Definition of coordinate system.

using equivalent asymptotics. For the highly supercritical case, where the speed of the ship
is much greater than the phase speed of the internal waves, the internal-wave wakes are then
very narrow, and numerical cross-flow theories have been used to compute the internal waves
(Tulin, Wang, and Yao [8], Wong and Calisal [9]). Earlier, Yeung and Kim [10] pointed out
that such cross-flow theory can only capture the presence of divergent waves. Other works
on this subject deal with the Green functions for a two-layer fluid. Hudimac [11] derived the
Green functions for an infinitely deep lower fluid layer. He showed the internal wave crests in
the far field for both the subcritical and supercritical case. Crapper [12] extended the study to
a pressure point and introduced a less cumbersome method for dealing with the asymptotics.
Other works on Green functions in a two-layer fluid include those of Sretenskii [13], Uspenskii
[14], and Sabunçu [15]. These authors focused on the internal-wave resistance of thin ships
of the Michell type [16]. Uspenskii [14] assumed the fluid to be of finite depth, and Sabunçu
[15] considered other cases where the upper fluid is either infinitely thick or bounded by a
rigid surface. More recently, in addressing the ‘dead-water’ problem, Milohet al. [3] derived
the Green functions for a two-layer fluid of finite depth and also showed some results for the
internal waves in the case of small density difference between the two fluid layers.

In the above mentioned studies on wave patterns in a two-layer fluid, attentions were
usually focused on the internal waves. If the density difference between the two fluid layers is
small, the critical Froude number Fr2, the Froude number corresponding to the fastest internal
waves, is also small, and it would be reasonable to neglect the effects of the free surface.
However, in the supersonic case, where the source Froude number is much greater than Fr2,
significant surface waves can be generated so that their effects on the internal wave pattern
may not be negligible. Also, when large density difference exists, it is possible to generate
significant disturbances on both the free surface and the interface, and interactions between
the two wave systems may result in unsual surface and internal wave patterns.

In this paper, we derive the Green functions for a two-layer fluid of finite depth and
use them to investigate the wave patterns on both the free surface and interface, with the
fluid-depth ratio and density ratio being arbitrary. In such an approach, we are thus able to
investigate in a unifying way how the two wave systems are coupled and their dependence on
the said physical parameters.
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2. Problem formulation

Consider a rectangular coordinate system moving with a source at a constant velocityU as
shown in Figure 1. Thex, y plane of this system coincides with the undisturbed interface
between the two fluid layers. The positivex-axis points in the direction of motion of the
source, and the positivez-axis points upward. The source is restricted to the upper fluid layer,
and its location is denoted by (ξ, η, ζ ). The densities and depths of the upper and lower fluid
layer are indicated byρ1, h1 andρ2, h2, respectively.

As in Lamb [17], a fictitious dissipative force proportional to the perturbation velocity is
introduced where the positive proportionality constant is denoted byµ. This force does not
disturb the irrotational nature of the flow, but it does facilitate the satisfaction of the radiation
condition and will be made zero in the final results. If the velocity potentials in the two fluid
layers are denoted byG(m)(x, y, z), wherem = 1,2 refer to the upper and lower fluid layer,
respectively, then the governing equations forG(m)(x, y, z) can be written as

∇2G(1) = δ(x − ξ, y − η, z− ζ ) and ∇2G(2) = 0, (1)

whereδ is the delta function. The linearized boundary conditions on the free surface and the
interface are (see Sabunçu [15])

koG
(1)
z +G(1)

xx − µG(1)
x = 0, z = h1, (2)

γ (koG
(1)
z +G(1)

xx − µG(1)
x ) = koG(2)

z +G(2)
xx − µG(2)

x , z = 0, (3)

G(1)
z = G(2)

z , z = 0, (4)

whereko = g/U2 andγ = ρ1/ρ2. Equation (2) is the usual mixed free-surface condition,
whereas (3) and (4) are the dynamic and kinematic conditions on the interface. On the rigid
bottom, the boundary condition is

G(2)
z = 0, z = −h2. (5)

And finally, far upstream of the source, the fluid velocities must vanish.

lim
x→∞∇G

(m) = 0. (6)

3. Derivation of the Green functions

3.1. FOURIER TRANSFORMS

We assume the solutionsG(m) to have the following forms:

G(1) = 1

r̃
+G(1)

o and G(2) = G(2)
o , (7)

wherer̃2 = (x − ξ)2 + (y − η)2 + (z − ζ )2. The unknown functionsG(m)
o must now satisfy

the Laplace equation:

∇2G(m)
o = 0. (8)
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To solve forG(m), we first introduce the following Fourier-transform pairs:

G(k1, k2, z) = F {G(x, y, z)}

≡ 1

2π

∫ ∞
−∞

∫ ∞
−∞

G(x, y, z)e−i[k1(x−ξ)+k2(y−η)] dx dy, (9)

G(x, y, z) = F −1{G(k1, k2, z)}

≡ 1

2π

∫ ∞
−∞

∫ ∞
−∞

G(k1, k2, z)ei[k1(x−ξ)+k2(y−η)] dk1 dk2. (10)

The transform of Equation (8) becomes

G(m)o,zz − (k2
1 + k2

2)G
(m)
o = 0 (11)

which has the following solution

G(m)o (k1, k2, z) = A(m)(k1, k2)ekz + B(m)(k1, k2)e−kz, (12)

wherek2 = k2
1 + k2

2. The Fourier transforms of the boundary conditions in Equations (2–5)
are

koG
(1)
z − k2

1G
(1) − iµk1G

(1) = 0, z = h1, (13)

γ (koG
(1)
z − k2

1G
(1) − iµk1G

(1)) = koG(2)z − k2
1G

(2) − iµk1G
(2), z = 0, (14)

G(1)z = G(2)z , z = 0, (15)

G(2)z = 0, z = −h2. (16)

HereG(1) = F {G(1)} = F {1/r}+G(1)o andG(2) = F {G(2)} = G(2)o . Substituting the following
well-known relation (see Gradshteyn and Ryzhik [18])

F

{
1

r

}
= e−k|z−ζ |

k
(17)

and Equation (12) into the above boundary conditions, we obtain a system of linear equations
for the four unknown coefficientsA(m)(k1, k2) andB(m)(k1, k2),m = 1,2. These equations can
be easily solved, and onceA(m)’s andB(m)’s are known,G(m)o can be inverted in the (x, y, z)
space to give

G(1)
o (x, y, z) = −

1

2π

∫ π

−π

∫ ∞
0
{2a(a + γ b)e−kh cosh[k(z− ζ )]

+2εab e−kd cosh[k(z− ζ )] − εb2 ek(h−z−ζ ) + εa2 e−k(h−z−ζ )

−b(a + γ b)ek(d−z−ζ ) + a(γ a + b)e−k(d−z−ζ )}e
ikω

1
dk dθ, (18)

G(2)
o (x, y, z) =

γ

2π

∫ π

−π

∫ ∞
0
{b(a + b)[ek(h+z−ζ ) + ek(d−z−ζ )]

−a(a + b)[e−k(h+z−ζ ) + e−k(d−z−ζ )]}e
ikω

1
dk dθ, (19)
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where h = h1+ h2, d = h1− h2, ε = 1− γ ,
(a, b) = k ± ko sec2 θ + iµ secθ ,
ω = (x − ξ) cosθ + (y − η) sinθ ,
1 = 2εab coshkd + b(γ a + b)ekh + a(a + γ b)e−kh.

If we let h2 in the expressions forG(m) approach infinity, we will recover the Green functions
for the case of an infinitely deep lower fluid layer as given in [15]. Also,G(m) can be reduced
to the potential of a source moving in a homogeneous fluid of finite-depth, as given in Pond
[19], by letting eitherρ1 = ρ2, γ = 0, orh2 = 0. Whenρ1 = ρ2, Equations (18) and (19) each
gives the expression for the single-layer, finite-depth Green function (SLFDGF). However, as
ρ2→∞ or γ = ρ1/ρ2 = 0,G(2) becomes identically zero, andG(1) reduces to the SLFDGF.
The lower fluid in this case behaves like a solid bottom since its density becomes infinitely
large. Lastly, by lettingh2 approach zero in Equation (18), we obtain again the SLFDGF.

3.2. CONTOUR INTEGRATION IN THEk-PLANE

The expressions forG(m)
o in Equations (18) and (19) are real expressions if proper cancellation

of the imaginary parts of the integrals are observed. Thus,G(m)
o can be written as

G(m)
o =

1

2π
lim
µ→0

R

{∫ π
2

− π2

∫ ∞
0
H(m)(k, θ)

eikω

1(k, θ)
dk dθ

}
, (20)

whereR represents the real part of the complex expression inside the braces, andH(m)(k, θ)

are given in Appendix A.
To perform the integration in Equation (20), we first need to locate the poles of the in-

tegrand. Letκ = k + iµ sec θ , tn = tanhkhn, n = 1,2, then we can rewrite1(k, θ)
as

1 = 4(coshkh1 coshkh2+ γ sinhkh1 sinhkh2)×
[κ − 1

2ko sec2 θ�1(k)][κ − 1
2ko sec2 θ�2(k)], (21)

where

�n(k) = t1+ t2
1+ γ t1t2

[
1+ (−1)n+1

√
1− 4(1− γ ) t1t2(1+ γ t1t2)

(t1+ t2)2
]
, (22)

for n = 1,2. Thus, for a givenθ , the roots of Equation (21) are given implicitly by

kn = 1
2ko sec2 θ�n(kn)− iµ secθ, n = 1,2. (23)

Bothkn are in the lower half of the complex plane, and asµ approaches zero, these poles will
approach the positive real axis from below.

With the location of the poles known, we can evaluate the inner integral of Equation (20)
using contour integration. Figure 2 shows the appropriate contours forω>0 andω<0, with
03 and05 at 45◦ to the real axis. Whenω > 0, the poleskn are outside the chosen contour,
and an application of the residue theorem yields the following equation asR→∞:∫ ∞

0
H(m)(k, θ)

eikω dk

1(k, θ)
=
∫ ∞

0
(1+ i)H (m)[u(1+ i), θ] e−uω eiuω du

1[u(1+ i), θ] . (24)
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Whenω < 0, the poleskn are inside the contour, and the residue theorem yields the
additional terms from the residues at these poles.

∫ ∞
0
H(m)(k, θ)

eikω dk

1(k, θ)
=
∫ ∞

0
(1− i)H (m)[u(1− i), θ]e

−u|ω| e−iu|ω| du
1[u(1− i), θ]

−2πi
2∑
n=1

H(m)(kn, θ)
eiknω

1′(kn, θ)
, (25)

where1′(kn, θ) = ∂1/∂k|k=kn . Note that the integral on the right-hand side of Equation (25)
is the complex conjugate of the corresponding integral in Equation (24).

Let us introduce the polar coordinates(r, ψ) as shown in Figure 3. Thenω = −r cos(θ +
ψ). Here,θ can be interpreted physically as the orientation of an elemental wave relative to the
x-axis, andψ is the polar angle of (x, y) relative to the negativex-axis. If we further restrict
y > 0, then it is easy to see thatω is negative when−π

2 < θ < (π2 − ψ) and positive when
(π2 − ψ) < θ < π

2 . Using these results and Equations (24) and (25), we can write (20), in the
limit asµ→ 0, as

G(m)
o = 1

2π

∫ π
2

− π2

∫ ∞
0

R9(m)

1 + S9(m)

2

R2+ S2
dudθ

+
2∑
n=1

=
{∫ π

2−ψ

− π2
H(m)(kn, θ)

eiknω

1′(kn, θ)
dθ

}
, (26)
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Figure 4. Solution of the wavenumberkn.

whereR(u, θ), S(u, θ),9(m)

1 (u, θ),9(m)

2 (u, θ),H(m)(k, θ), and1′(k, θ) are given in Appen-
dix A. The double integral in this equation contains no singularity and is relatively straight-
forward to evaluate. The single integrals require the values ofkn and merit additional consid-
erations. Asµ→ 0, the poleskn can be obtained from (23) as

kn = 1
2ko sec2 θ�n(kn), n = 1,2. (27)

The solution of this equation is illustrated in Figure 4, where the expression on the right-
hand side is plotted against the variablek. The intersection of this curve with the straight line
f (k) = k determines the location of the polekn. The slope of this curve atk = 0 is given
by koh sec2θ Fr2n, where Fr2n = 1

2h
∂�n
∂k

∣∣
k=0

. The nondimensional parameter Frn is the critical
Froude number corresponding to the wave moden. Performing the differentiation, we can
relate Frn to the other physical parameters of the problem as follows:

Fr2n = 1
2 + (−1)n+1

√
1

4
− (1− γ )h1h2

h2
. (28)

It is easy to see from Figure 4 that the existence ofkn depends on the value of the slopekoh
sec2θ Fr2n, wherekn exists if this slope is greater than unity. If we define the total depth Froude
number as Fr2 = U2/gh, thenkoh sec2θ Fr2n = (secθ Frn

Fr )
2, andkn exists if (secθ Frn

Fr )
2 > 1.

Thus, we can rephrase the criteria for the existence ofkn in terms of the relative values of Fr
and Frn as follows. If Fr<Frn, thenkn exists for all values ofθ within the range of integration
since sec2θ > 1. If Fr> Frn, thenkn exists only if sec2θ > Fr2

Fr2n
or for values ofθ such that

|θ | > θn = cos−1(Frn
Fr ). Thus, when Fr> Frn, the range of integration of the corresponding

single integral in (26) should be modified to exclude the values ofθ for which kn does not
exist, i.e., |θ | < θn.

3.3. PHYSICAL INTERPRETATION OFFrn

The physical meaning of the critical Froude number Frn can be seen by considering waves
propagating along the track of the source. We can obtain the wave number for these wavesk∗n
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Figure 5. Critical Froude numbers, Fr1 and Fr2.

by substitutingθ = 0 into (27). Since the phase speed of these waves is equal to the source
speedU , the following relationship between phase speed and wave number can be obtained:

c2
n =

g

2
· �n(k

∗
n)

k∗n
. (29)

As γ approaches unity, this relationship reduces to

c2
1 =

g

k1
tanhk1h and c2

2 = 0. (30)

Thus,c1 is just the phase speed for surface waves in uniform water of finite depthh. Also, as
h2 approaches infinity, Equation (29) becomes

c2
1 =

g

k1
and c2

2 =
g

k2
· (1− γ ) tanhk2h1

1+ γ tanhk2h1
. (31)

Here, the expression forc1 is the same as the phase-speed relationship for surface waves in
uniform water of infinite depth, and the expression forc2 is the phase-speed relationship for
internal waves for the special case of an infinitely deep lower fluid [15]. In light of these
results, we shall now denote waves associated with wave numberk1 as being generated by
the surface-wave mode and those associated with wave numberk2 as being generated by the
internal-wave mode.

From (29), we can show that the fastest waves are those with the longest wavelengths, and
by allowingk∗n go to zero, we obtain the maximum phase speed for waves of each wave mode.
For smallk,�n(k) ≈ ∂�n

∂k

∣∣
k=0
· k, and the maximum phase speed is

c2
n,M =

g

2
· ∂�n
∂k

∣∣∣∣
k=0

= ghFr2n. (32)

Thus, in summary, the critical Froude number Frn is the Froude number associated with the
fastest wave of wave moden. This Froude number plays an important role in determining the
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Figure 6. Functiongn(θ) for θ > 0, case of Fr< Frn (left) and Fr>Frn (right).

shape of the wave pattern. If we expressh2/h as 1− h1/h, then from (28), Frn is a function
of the density ratioγ and the depth ratioh1/h. Figure 5 plots both Fr1 and Fr2 for γ andh1/h

from 0 to 1. As can be seen in this figure, Fr1 is larger than Fr2. Thus, the maximum phase
speed of waves of the surface-wave mode is larger than that of the internal-wave mode.

4. Surface-wave and internal-wave patterns

From the dynamic boundary conditions on the free surface and interface, the surface wave and
internal wave patterns due to the motion of a point source can now be expressed as follows:

ζ (1)(x, y) = U

g
G(1)
x

∣∣∣∣
z=h1

, ζ (2)(x, y) = U

εg
(G(2)

x − γG(1)
x )

∣∣∣∣
z=0

. (33)

To gain more insights into the generated wave patterns, we apply the method of stationary
phase to the above equations. Since we are interested in the far field behind the source, we
will focus only on the single-integral terms ofG(m). Thus, by Equation (26), in the far field
ζ (m) can be expressed as

ζ (m) ∼
2∑
n=1

R

{∫ π
2−ψ

− π2
P (m)(kn, θ)ei(

r
h )fn(θ,ψ) dθ

}
, r/h >> 1, (34)

wherefn(θ,ψ) = −hkn cos(θ + ψ), P (1) = [Ukn cosθ H (1)/(g1′)]|z=h1 and P (2) =
[Ukn cosθ (H (2) − γH(1))/(εg1′)]|z=0. Note that each wave patternζ (m) contains contri-
butions from both the surface-wave mode associated with the polek1 and the internal-wave
mode associated withk2.

4.1. STATIONARY POINTS

The stationary points offn(θ,ψ) in (34) for larger/h are the solutions of the following
equation [20]:

tanψ = gn(θ) =
∂kn
∂θ
− kn tanθ

∂kn
∂θ

tanθ + kn
. (35)

Sincekn(θ) is defined for−π
2 < θ < π

2 when Fr< Frn, but when Fr> Frn, kn exists only
for θn 6 |θ | < π

2 , we need to considergn(θ) for these two cases separately. For positiveψ ,
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Figure 7. Effects ofh1/h on half-wedge angleψn.

Figure 8. Effects ofγ on half-wedge angleψ2.

we need only consider positive range ofθ . Figure 6 illustrates the general behavior ofgn(θ)

for the subcritical case and supercritical case. It is evident from this figure that stationary
points exist only whenψ < ψn, the maximum half angle in the wake where dominant waves
exist.ψn is given by tan−1[gn(θ∗n )]. For Fr> Frn, ψn can be shown to be given explicitly by
sin−1(Frn/Fr). For any point (r, ψ) in the wake, either two stationary pointsθn,1, θn,2 exist for
the case of Fr< Frn, or one stationary pointθn,1 exists for Fr>Frn. Waves oriented atθ in the
range of [θn, π2 ] represent the divergent wave field, while those in [0, θn], if exist, represent the
transverse wave system. Note that in this context, there is considerable analogy to the classical
Kelvin wave system. It is helpful to denote the number of stationary points offn(θ,ψ) assn,
thensn = 2 for Fr< Frn andsn = 1 for Fr> Frn.

Figures 7 and 8 illustrate the dependence of the half-angleψn on h1/h, γ , and Fr. As the
ratio Fr/Frn goes from zero to unity,ψn increases from 19◦28

′
, the well-known Kelvin-wave
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wake in deep water, to 90◦. When Fr/Frn > 1, ψn decays as sin−1 (Frn/Fr). The curveψ1

versus Fr/Fr1 has a very weak dependence onh1/h andγ . Thus, for a constant Fr,h1/h and
γ affectψ1 mainly through the critical Froude number Fr1. The half-angleψ2, on the other
hand, shows a stronger dependence on bothh1/h andγ . Figure 7 plotsψn against Fr/Frn for
different values ofh1/h but with constantγ = 0·97, the standard fresh water/salt water ratio.
The curveψ1 is represented here by the dot symbol and is shown only forh1/h = 0·5 sinceψ1

is fundamentally the same for other values ofh1/h. The angleψ2 is represented by the solid
line and is shown forh1/h = 0·1, 0·3, 0·5, 0·7 and 0·9. Since the functiongn(θ) depends only
on the product ofh1/h andh2/h, the half-angleψn is the same forh1/h = 0·1, h2/h = 0·9
and forh1/h = 0·9, h2/h = 0·1. Similarly, the curves forh1/h = 0·3 and h1/h = 0·7 are the
same. Forh1/h = 0·5, the curves forψ1 andψ2 are practically the same, but ash1/h moves
away from 0.5,ψ2 increases noticeably for 0·5 < Fr/Fr2 < 1. Figure 8 shows the effects
of γ onψ2 for constanth1/h = 0·1 or 0·9. As γ increases,ψ2 also increases for a certain
range of Fr2.

4.2. CRESTLINE PATTERNS

For larger/h, Equation (34) has the following expansion

ζ (m)(r, ψ) ∼
2∑
n=1

sn∑
l=1

A
(m)
n,l (r, ψ) cos

[( r
h

)
fn(θn,l, ψ)+ (−1)l+1π

4

]
, (36)

where

A
(m)
n,l (r, ψ) = P (m)[kn(θn,l), θn,l]

√
2π

( r
h
)|f ′′n (θn,l, ψ)|

(37)

andf ′′n = ∂2fn/∂θ
2. According to (36), the surface wave elevationζ (1) and the internal wave

elevationζ (2) can each be composed of up to four different wave systems: the divergent waves
(l = 1) and the transverse waves (l = 2) due to the surface wave mode (n = 1), and the
divergent and transverse waves due to the internal wave mode (n = 2).

The pattern of the crestlines of the divergent and transverse waves can be obtained by a
procedure as described in Wehausen and Laitone [21]. These crestlines are determined from
the equation of constant phase:

− r
h
fn(θn,l, ψ)+ (−1)l

π

4
=
{

2jπ for A(m) > 0,

(2j + 1)π for A(m) < 0,
(38)

wherej = 0,1,2, . . .. The sign ofA(m)n,l depends only onm andn, but not onl. For the surface

wave mode,n = 1, bothA(1)1,l , A
(2)
1,l 6 0, and the crestline pattern due to this mode is the
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Figure 9. Crestlines of surface wave mode, Fr=0·37,
h1/h = 0·5, γ = 0·5.

Figure 12. Crestlines of internal wave mode,
Fr=0·37,h1h = 0·5, γ = 0·5.
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Figure 10. Crestlines of surface wave mode, Fr=0·5,
h1/h = 0·5, γ = 0·5,

Figure 13. Crestlines of internal wave mode,
Fr=0·5, h1/h = 0·5, γ = 0·5.
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Figure 11. Crestlines of internal wave mode, Fr=1·3,
h1/h = 0·5, γ = 0·5.

Figure 14. Crestlines of internal wave mode,
Fr=1·3, h1/h = 0·5, γ = 0·5.

same on the free surface as on the interface. For the internal wave mode,n = 2, A(1)2,l 6 0,

butA(2)2,l > 0, and the crestline pattern on the free surface is 180◦ out of phase with that on
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Figure 15. Amplitude functions for surface-wave mode, Fr/Fr1=0·7, h1/h=0·5, γ=0·97; Ā(1)1,l (surface waves,

left), Ā(2)1,l (internal waves, right).

Figure 16. Amplitude functions for internal-wave mode, Fr/Fr2=0·7, h1/h=0·5, γ=0·97; Ā(1)2,l (surface waves,

left), Ā(2)2,l (internal waves, right).

the interface,i.e., the crestlines on the free surface are directly above the troughlines on the
interface.

Figures 9–11 show the crestlines on the free surface and the interface due to the surface-
wave mode for Fr=0·37, 0·5, and 1·3, respectively. In these figures, the depths of the fluid
layers areh1/h = h2/h = 0·5, and the density ratio isγ = 0·5. For the above physical
parameters, the critical Froude numbers Fr1 and Fr2 are 0·924 and 0·383, respectively. Thus,
the patterns in Figures 9 and 10 represent the subcritical case and contain both divergent
and transverse crestlines, whereas the pattern in Figure 11 corresponds to the supercritical
case and contains only divergent crestlines. Figures 12–14 show the crestline patterns due
to the internal-wave mode for the same Froude numbers and physical parameters. Here, the
crestlines on the free surface, indicated by the solid lines, are different from those on the
interface, indicated by the dashed lines. Again, the pattern for the subcritical speed, Figure 12,
contains both divergent and transverse crestlines, and the patterns for supercritical speeds,
Figures 13 and 14, contain only divergent crestlines.

4.3. WAVE AMPLITUDE ALONG CRESTLINES

Next, we investigate the behavior of the amplitude functionA(m)n,l . Nondimensionally, this
function will depend on the parametersζ/h, h1/h (or h2/h), γ , and Fr. To understand the
dependence ofA(m)n,l on these parameters, we will plotA(m)n,l along the crestlines of the divergent
and transverse waves (l = 1,2) for mode indexn = 1,2. To simplify the plotting, we will
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introduce below the nondimensional amplitude functionĀ(m)n,l which only depends onψ and
not onr/h. Note that along each crestline the phase is constant, and this allows us to define
r/h along thej th crestline in terms ofψ . Thus, ifA(m)n,l > 0, then r

h
= −[8j+(−1)l+1]π

4fn(θn,l ,ψ)
, and if

A
(m)
n,l < 0, then r

h
= −[8j+4+(−1)l+1]π

4fn(θn,l ,ψ)
. Substituting these expressions forr/h in (37) and after

some rearrangings, we obtain the following equation forĀ
(m)
n,l :

Ā
(m)
n,l =

gh2|A(m)n,l |
U

√
8j + c + (−1)l+1

√
8

= |P̄ (m)[kn(θn,l), θn,l]|
√
−fn(θn,l, ψ)
|f ′′n (θn,l, ψ)|

, (39)

wherec = 0 for A(m)n,l > 0, andc = 4 for A(m)n,l < 0, P̄ (m)[kn (θn,l), θn,l] ≡ gh2P (m)

[kn(θn,l), θn,l]/U , which is nondimensional. Note thatĀ(m)n,l as defined is nonnegative and only
a function ofψ .

Effects of ζ/h: Figures 15–16 show the effects of the source vertical locationζ/h on the
nondimensionalized amplitude function̄A(m)n,l . In these figures,γ = 0.97,h1/h = 0.5, Fr/Frn =
0.7, and the angleψ is normalized by the half-angle of the wave patternψn. Figure 15 plots
Ā
(1)
1,l andĀ(2)1,l along the divergent and transverse wave crestlines. These amplitude functions

correspond to the surface and internal waves, respectively, due to the surface-wave mode.
As ζ/h increases,i.e., as the source moves closer to the free surface, the amplitudes of both
transverse and divergent waves increase, and the divergent waves become more dominant. The
waves on the free surface are larger than those on the interface for this mode, and the amplitude
of the internal waves actually increases as the source moves away from the interface. Figure 16
plotsĀ(1)2,l andĀ(2)2,l which are associated with the surface and internal waves, respectively, due
to the internal-wave mode. Here, the wave amplitudes increase, with the divergent waves
become more dominant, as the source moves closer to the interface. The internal waves are
much larger than the surface waves in this case, and it is possible to have large movement of
the interface without visible disturbance on the free surface. Also, the amplitude of the surface
waves due to the internal-wave mode actually increases as the source moves away from the
free surface and closer to the interface.

Effects of speed(Fr): Figures 17–18 show the effects of the Froude number Fr onĀ
(m)
n,l . In

these figures,γ = 0·97, h1/h = 0·5, andζ/h = 0·25, i.e., the source is equidistant from
the free surface and the interface. The Froude number is normalized by the critical Froude
number Frn and ranges from a subcritical value Fr/Frn = 0·5 to a slightly supercritical value
Fr/Frn = 1·3. Figure 17 shows the amplitude functionsĀ(m)1,l associated with the surface-

wave mode, and Figure 18 shows the functionsĀ
(m)
2,l associated with the internal-wave mode.

For Ā(1)1,l andĀ(2)2,l , the amplitude of the transverse waves decreases and the amplitude of the
divergent waves increases as Fr/Frn approaches unity from below. This phenomenon is similar
to that of a source in a uniform fluid of finite depth when the Froude number of the source
approaches unity. The behavior of the coupling termsĀ

(2)
1,l and Ā(1)2,l , i.e., the amplitude of

the internal waves due to the surface-wave mode and the amplitude of the surface waves due
to the internal-wave mode, respectively, is more unpredictable. Although the amplitudes of
the divergent waves̄A(2)1,1 and Ā(1)2,1 increase as Fr/Frn approaches 1 as before, no definitive
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Figure 17. Amplitude functions for surface-wave mode,h1/h=0·5, ζ/h=0·25, γ=0·97; Ā(1)1,l (surface waves,

left), Ā(2)1,l (internal waves, right).

Figure 18. Amplitude functions for internal-wave mode,h1/h=0·5, ζ/h=0·25, γ=0·97; Ā(1)2,l (surface waves,

left), Ā(2)2,l (internal waves, right).

trend can be observed for the amplitude of the transverse wavesĀ
(2)
1,2. The amplitude of the

transverse waves̄A(1)2,2 actually increases as Fr/Fr2 approaches 1. When Fr/Frn increases past

unity, only divergent waves̄A(m)n,1 exist, and their amplitude decreases slowly with increasing
Fr/Frn.

Effects of γ : Figures 19–20 show the effects ofγ on Ā(m)n,l . In these figures,h1/h = 0·5,
ζ/h = 0·25, and Fr/Frn = 0·7. As shown in Figure 19, the amplitude of the transverse waves
Ā
(1)
1,2 increases asγ decreases. This is due to the fact that the lower fluid behaves more like a

solid for smallγ and, consequently, the effective total depth reduces to a value closer toh1,
and the amplitude of the surface waves due to the surface-wave mode will increase. For the
divergent wavesĀ(1)1,1, the effects of decreasingγ are more complicated. Since Fr/Fr1 is kept
fixed, asγ decreases, Fr1 also decreases, and so does Fr. This reduction in Fr causes a more
pronounced decrease in the amplitude of the divergent waves than the transverse waves and
results in an increase of̄A(1)1,1 near the edge of the wake but a decrease in the interior of the

wake. Figure 20 plots̄A(2)2,l and shows a large increase in the amplitude of the internal waves
asγ becomes closer to unity.

Effects ofh1/h: The effects ofh1/h on Ā(m)n,l are investigated for Fr/Frn = 0·7 andγ = 0·7.

The amplitude functions̄A(m)n,l are computed for a source located at a distance of 0·01hbelow
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Figure 19. Amplitude functions for surface-wave mode, Fr/Fr1=0·7,h1/h=0·5, ζ/h=0·25; Ā(1)1,l (surface waves,

left), Ā(2)1,l (internal waves, right).

Figure 20. Amplitude functions for internal-wave mode, Fr/Fr2=0·7,h1/h=0·5,ζ/h=0·25;Ā(1)2,l (surface waves,

left), Ā(2)2,l (internal waves, right).

the free surface. The plots ofĀ(m)n,l are not presented here because of space limitation. For these

parameters, the depth ratioh1/h has a relatively minor effect on̄A(1)1,l . As h1/h increases,

the interface is farther away from the source, andĀ(2)1,l decreases accordingly as expected.

Similarly, Ā(m)2,l also decreases ash1/h increases.

From the results presented so far, one observes that forγ≈1, the coupling terms̄A(2)1,l and

Ā
(1)
2,l are small compared tōA(1)1,l andĀ(2)2,l . However, forγ not close to unity, the coupling terms

can be of comparable magnitude asĀ(1)1,l andĀ(2)2,l under certain conditions, in particular, when
Fr/Frn ≈ 1 and the source is either close to the free surface or the interface. To illustrate this
point, Figure 21 plotsĀ(m)n,l , m = 1,2 andn = 1,2 for Fr= 0·37, h1/h = 0·5, ζ/h = 0·1,
andγ = 0·5. The critical Froude number Fr2 for this case is 0·383 and Fr/Fr2 = 0·966. In this
figure, the surface waves due to the surface-wave modeĀ

(1)
1,l is of the same order of magnitude

as the surface waves due to the internal-wave modeĀ
(1)
2,l . Thus, one can expect interesting

surface wave patterns under these conditions.

4.4. WAVE PATTERNS USING FULL EXPRESSIONS OFG(m)

The crestline patterns shown in Figures 9–14, as pointed out in Chung and Lim [22], merely
express the superposition of the crestlines of the divergent and transverse waves and do not
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Figure 21. Amplitude functionsĀ(m)
n,l

for Fr= 0·37,h1/h = 0·5, ζ/h = 0·1, γ = 0·5.

depend on the amplitudes of these two wave systems. For a better visualization of the surface
and internal waves, we proceed to computeζ (m) (Equation 33) using the full expressions of
G(m) as presented in Equations (7) and (26). An adaptive quadrature using Simpson’s rule [23]
is used to integrate both the double and single integrals. The poleskn in the single integrals are
obtained by Newton’s method. The results of these computations are shown in Figures 22–27
(see also [24] for some preliminary results). In each of these figures, the surface or interface
elevations for a square area, 17h × 17h are plotted. The source is located horizontally at 3h
behind the front edge of the square and vertically in the middle of the upper fluid layer. The
depth of each fluid layer is 15m, and density ratioγ is 0·97 for Figures 22–24 and 0·5 for
Figures 25–27. These plots are intended to illustrate the effects of the source speed on the
generated surface and internal waves, and also to demonstrate the coupling effects whenγ is
not close to unity. Since Fr2 < Fr1, it is convenient to classify the wave patterns according
to Fr< Fr2, Fr2 < Fr < Fr1, or Fr1 < Fr. Thus, for each value ofγ , the wave patterns for
Froude numbers in each of the three regimes are shown. In Figures 22–24,γ = 0·97, and
Fr1 = 0·996 and Fr2 = 0·087. The three Froude numbers selected for this case are Fr= 0·08,
0·5, and 1·3. Note that in all these figures, the wave elevationsζ (m) are magnified for clarity,
and the magnification factor is indicated in the caption for each figure.

Figure 22 shows the surface waves and internal waves for Fr= 0·08. At this low Froude
number, the waves due to the surface-wave mode are negligible, but large waves are generated
on the interface through the internal-wave mode. Since Fr is less than Fr2 but very close to it,
both divergent and transverse waves are present, and the half-angle of the wave pattern is very
close to 90◦. The amplitude of the internal waves is approximately 75 times larger than that of
the surface waves. The conditions in these two plots correspond to the well-known dead-water
phenomenon where a ship is traveling close to the speed of the fastest internal waves and is
experiencing a large wave drag due to the generation of large amplitude internal waves. Note
also that forγ ≈ 1, it is possible to have large vertical displacement of the interface without
significant displacement of the free surface.

Figure 23 plots the surface and internal wave patterns for Fr=0·5. At this Froude number,
the source is traveling faster than the fastest internal waves and is in the supercritical speed
with respect to the internal-wave mode. However, it is still moving at the subcritical speed
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Figure 22. Surface waves (left), 4·6E5 · ζ (1) and internal waves (right), 6·2E3 · ζ (2) for Fr= 0·08,h1/h = 0·5,
ζ/h = 0·25,γ = 0·97.

Figure 23. Surface waves (left), 3·5E4 · ζ (1) and internal waves (right), 3·9E4 · ζ (2) for Fr= 0·5, h1/h = 0·5,
ζ/h = 0·25,γ = 0·97.

Figure 24. Surface waves (left), 6·5E4 · ζ (1) and internal waves (right), 1·1E5 · ζ (2) for Fr= 1·3, h1/h = 0·5,
ζ/h = 0·25,γ = 0·97.

with respect to the surface-wave mode. The surface wave pattern is similar to the Kelvin
wave pattern, and the influence of the internal-wave mode on the free surface is negligible,
i.e., Ā(1)2,l � Ā

(1)
1,l . The internal wave pattern contains the narrowV -wake associated with the

divergent wave system of the internal-wave mode and also the divergent and transverse waves
systems associated with the surface-wave mode.

Figure 24 shows the surface and internal wave pattern for Fr= 1·3. The source, in this case,
is travelling faster than the fastest surface and internal waves and is at the supercritical speed
with respect to either mode. At this Froude number, the half-angleψ2 is much smaller than the
half-angleψ1, and it is possible to discern the contribution of each mode to the surface and
internal waves. Again, the surface wave pattern shows little contribution from the internal-
wave mode. The narrowV -wake of the internal-wave mode is not seen on the free surface.
Near the source’s track, the free surface is practically flat. On the interface, the narrowV -
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Figure 25. Surface waves (left), 4·4E4 · ζ (1) and internal waves (right), 3·3E4 · ζ (2) for Fr= 0·37,h1/h = 0·5,
ζ/h = 0·25,γ = 0·5.

Figure 26. Surface waves (left), 4·0E4 · ζ (1) and internal waves (right), 6·4E4 · ζ (2) for Fr= 0·5, h1/h = 0·5,
ζ/h = 0·25,γ = 0·5

Figure 27. Surface waves (left), 6·5E4 · ζ (1) and internal waves (right), 3·0E5 · ζ (2) for Fr= 1·3, h1/h = 0·5,
ζ/h = 0·25,γ = 0·5

wake is prominent along with the divergent waves of the surface-wave mode, radiating out at
a wider angle from the source’s track.

Figures 25–27 show the wave patterns forγ = 0·5. The critical Froude numbers for this
case are Fr1 = 0·924 and Fr2 = 0·383, and the Froude numbers chosen to illustrate the
three Froude number regimes are 0·37, 0·5, and 1·3. Figure 25 shows the surface and internal
waves for Fr= 0·37. The parameters in these figures are similar to those of Figure 21 with
the exception ofζ/h. In Figure 21, the source is closer to the interface than in Figure 25.
However, the conclusions drawn from Figure 21 are still valid for Figure 25, namely,Ā

(1)
1,l ,

Ā
(1)
2,l , andĀ(2)2,l are roughly of the same order of magnitude. The surface wave pattern contains
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a significant contribution from the internal wave mode whose divergent waves radiate out at a
angle almost 90◦ to the source’s track. It also has the usual contribution from the surface-wave
mode within a smaller half-angleψ1. Figure 25 again confirms what has already been observed
in Figure 21, namely, the internal waves due to the surface-wave mode is much smaller than
the internal waves due to the internal-wave mode. In Figure 25, one can observe the phase
shift in the surface and internal waves due to the internal-wave mode, where the crests of the
divergent waves on the free surface is above the troughs of the waves on the interface. One
can also observe the longer wavelengths of the internal-wave mode compared to the surface
wave-mode.

Figure 26 presents the results for Fr= 0·5. Again, one can see the coupling effects on
both the surface and internal waves. The surface waves and the internal waves contain the
divergent and transverse waves due to the surface-wave mode and the divergent waves due to
the internal-wave mode. Finally, Figure 27 shows the wave patterns for Fr= 1·3. The surface
wave pattern is similar to that in Figure 24 forγ = 0·97 where the contribution from the
internal-wave mode is negligible. However, the contribution from the surface-wave mode to
the internal waves is significant as can be seen in Figure 27.

5. Conclusions

The velocity potentials of a steadily translating source in the upper layer of a two-layer fluid
of finite depth is derived in a form amenable to numerical treatment. These velocity potentials
consist of a double-integral term which is symmetric with respect to both thex andy-axes,
and two single-integral terms associated with the surface-wave mode and internal-wave mode.
The velocity potential are then used to analyze the surface and internal wave patterns in the
far field of the source using the method of stationary phase. The results are further confirmed
and illustrated by numerically evaluating the full expressions of the potentials.

Two critical Froude numbers, Fr1 and Fr2, are defined in the derivation which play an
important role in determining the shapes of the wave patterns. These critical Froude numbers
are the Froude numbers correspond to the fastest waves of each mode, normalized by the
total depth. From the asymptotic analysis, it is shown that for thenth wave mode, if the total
depth Froude number of the source Fr is less than Frn, i.e., the source is moving slower than
the fastest waves of then-mode, then both divergent and transverse waves are generated for
that mode. However, when Fr> Frn, then only divergent waves are excited for this mode.
Further, each wave mode contributes to the surface waves and internal waves. Thus, there are
a maximum of four different wave systems: two on the free surface because of the surface
and internal wave modes and two on the interface because of these same wave modes. When
the density ratio of the two fluid layers,γ = ρ1/ρ2, is close to unity, then Fr1 ≈ 1 and
Fr2 � 1. The internal-wave mode in this case is important only if the speed of the source is
small and Fr≈ Fr2. The surface-wave mode, on the other hand, is important when Fr� Fr2.
Also in this case, the surface waves associated with the internal-wave mode and the internal
waves associated with the surface-wave mode, the ‘cross-coupling influence’, are normally not
very significant. This could allow one to treat the surface waves separately from the internal
waves as were done by many authors. However whenγ is not close to one, Fr1 and Fr2 can
be of comparable magnitudes, and in certain range of Froude numbers, both modes become
important. Furthermore, the surface and internal waves associated with the ‘cross-coupling
influence’ are significant, and one have to account for all four wave systems.
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Appendix A

The functionsR(u, θ), S(u, θ), 9(m)

1 (u, θ), 9(m)

2 (u, θ), H(m)(k, θ), and1′(k, θ) in Equa-
tion (26) are given in this Appendix as follows.

R(u, θ) = εk2
o(coshuh cosuh− coshud cosud)

−2uko cos2 θ(sinhuh cosuh− coshuh sinuh)

−2u2 cos4 θ[(1+ γ ) sinhuh sinuh+ ε sinhud sinud], (40)

S(u, θ) = εk2
o(sinhuh sinuh− sinhud sinud)

−2uko cos2 θ(coshuh sinuh+ sinhuh cosuh)

+2u2 cos4 θ[(1+ γ ) coshuh cosuh+ ε coshud cosud], (41)

9
(1)
1 = 2u2 cos4 θ[ε(M1+M2+M7−M8−N1−N2 −N7+N8)

+(1+ γ )(M3−M4+M5 +M6−N3+N4 −N5−N6)]
−4uko cos2 θ[γ (N3+N4)+ N5+N6+ ε(N7+N8)]
+εk2

o(M1 +M2+M3−M4−M5−M6−M7+M8

+N1+ N2+N3−N4−N5 −N6−N7+N8), (42)

9
(1)
2 = −2u2 cos4 θ[ε(M1+M2+M7 −M8+N1+N2+ N7−N8)

+(1+ γ )(M3−M4+M5 +M6+N3−N4 +N5+N6)]
−4uko cos2 θ[γ (M3+M4)+M5+M6+ ε(M7+M8)− 4]
+εk2

o(M1 +M2+M3−M4−M5−M6−M7+M8

−N1−N2− N3+N4+N5+N6+N7 −N8)− 16εuk2oh2, (43)

9
(2)
1 = 4γ u2 cos4 θ(M3−M4 +M6−M9−N3+ N4−N6+N9)

−4γ uko cos2 θ(N3+N4+N6 +N9), (44)

9
(2)
2 = 4γ u2 cos4 θ(−M3+M4 −M6+M9−N3+N4 −N6+N9)

−4γ uko cos2 θ(M3+M4+M6 +M9− 4), (45)

where

Mj = e−u(dj+|ω|) cos[u(dj − |ω|)], Nj = e−u(dj+|ω|) sin[u(dj − |ω|)],
d1,2 = d ∓ z± ζ, d3,4 = ±(d − z− ζ ),
d5,6 = h∓ z± ζ, d7,8 = ±(h− z− ζ ),
d9 = −h− z+ ζ,
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H(1)(k, θ) = −8kko sec2 θ{ε cosh[k(h− z− ζ )] + γ cosh[k(d − z− ζ )]}
+4ε(k2+ k2

o sec4θ) sinh[k(h− z− ζ )]
+4[(1+ γ )k2− εk2

o sec4θ] sinh[k(d − z− ζ )]
−4{[(1+ γ )k2+ 2kko sec2θ + εk2

o sec4θ]e−kh

+ε(k2− k2
o sec4θ)e−kd} cosh[k(z− ζ )], (46)

H(2)(k, θ) = 16γ cosh[k(h2+ z)] ·
{k2 sinh[k(h1− ζ )] − kko sec2θ cosh[k(h1− ζ )]}, (47)

1′(k, θ) = 4k[(1+ γ )− hko sec2θ] coshkh

+2[(1+ γ )hk2− 2ko sec2 θ + εhk2
o sec4θ] sinhkh

+4εk coshkd + 2εd(k2− k2
o sec4θ) sinhkd. (48)
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